
Dealing with Failures

During Failure Recovery of Distributed Systems

Naveed Arshad Dennis Heimbigner Alexander Wolf

CU-CS-1009-06

May 2006

�

University of Colorado at Boulder

Technical Report CU-CS-1009-06
Department of Computer Science

Campus Box 430
University of Colorado

Boulder, Colorado 80309–0430

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
Dealing with Failures During Failure Recovery of Distributed Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Colorado at Boulder,Department of Computer
Science,Campus Box 430,Boulder,CO,80309-0430

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

14

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Dealing with Failures
During Failure Recovery of Distributed Systems

Naveed Arshad Dennis Heimbigner Alexander Wolf

May 2006

Abstract

One of the characteristics of autonomic systems is self recovery from failures.
Self recovery can be achieved through sensing failures, planning for recovery and
executing the recovery plan to bring the system back to a normal state. For various
reasons, however, additional failures are possible during the process of recovering
from the initial failure. Handling such secondary failures is important because
they can cause the original recovery plan to fail and can leave the system in a
complicated state that is worse than before. In this paper techniques are identified
to preserve consistency while dealing with such failures that occur during failure
recovery.

1 Introduction

Failure of the software and hardware components of a computer system is an expected,
though undesirable, event. These failures may occur for many reasons. Some of the
reasons include external attacks, internal faults, configuration mismatches, bugs, etc.
Techniques to recover the components from failures have been available for a long time,
but these techniques are mostly manual [11]. Automated failure recovery techniques are
now being developed to materialize the notion of self recovery. Most of these techniques
follow a general framework of sense-plan-execute [10].

One aspect of recovery that is rarely addressed, however, is the failure of components
during the recovery process itself. The overall system is in an unstable condition during
the recovery process, so there is no guarantee that other unaffected parts of the system will
continue to work as normal during the recovery process. These failures can be detected
at any time during the recovery process (Figure 1). Consequently, failures during each
phase of the recovery process require specialized handling as determined by the phase
properties. Moreover, once the system is recovered, it can not be assumed that the
recovery process has recovered the system properly. There can be instances where the
system seems to be recovered but it is not functioning as desired. Therefore, some form
of acceptance test must be applied to the system to ensure its reliability.

1

Figure 1: Failure detection that results in a decision to either continue or restart the
recovery phase.

In the next section we give a brief overview of our approach to the recovery process
in distributed systems. In subsequent sections, we describe the basic motivation of our
approach of dealing with failures during recovery. From there we take each step in the
recovery process and discuss what failures may occur in the system and how to handle
them.

2 Failure Recovery Model

The failure recovery model we are using is a dynamic recovery model [12]. In a dynamic
recovery model the handling of the failure is decided and applied at runtime. Several
approaches to dynamic recovery are possible, however, our recovery model is based on
three phases: Sense, Plan and Execute [2].

2.1 Sense

In the sense phase of the recovery process a monitor receives notification from the com-
ponents about their health. These notifications are sent by probes inside the component.
The notifications can be in the form of a regular heartbeat or in the form of a response
to an explicit ping by the monitor. If the monitor suspects the component is behaving
incorrectly, it puts the component in a suspected state and carry out some more tests to
find out if the component has failed. If it determines that the component has failed it
starts the planning process to find a plan to recover the failed component.

The sensing phase occurs continuously during the lifetime of the system; that is,
the sensors report all failures no matter when they occur. This means that during the
recovery process the monitor still continues to receive notification about the failure of
components.

2

2.2 Plan

In the planning phase, the goal is to find a plan that recover the failed components
while minimizing the effect on the other parts of the system. Planning has many sub-
phases. The first sub-phase is to analyze a dependency model to determine the current
components’ state. The second sub-phase is to find a target configuration of the system
so that system can be expected to start working correctly again if it reaches that target
configuration.

The third sub-phase is compute a plan for recovery. Our approach uses an AI Plan-
ner [8] to compute this plan. During this planning sub-phase, the planner take as input
a domain which specifies the semantics of the system. Additionally, it takes an initial
state (i.e. the present (failed) state of the system) and it takes a goal (recovered) state
of the system. Based on the semantics of the domain and the initial and goal state it
computes a plan. A plan is a set of steps that take the system from the initial state to
the goal state.

The fourth and final sub-phase is to translate the plan into a recovery script that can
be executed to recover the application into the target configuration.

2.3 Execute

The execute phase takes the recovery script and executes it. At the end of the execution,
the system should be restored to correct operation. After the recovery completes an
acceptance test is applied to the system to ensure its reliability.

3 Problems and Assumptions

The problems in dealing with failures during failure recovery stem from the arbitrary
nature of failures. Failures can be detected at any time during the lifetime of the sys-
tem. Even when the system is recovering from a failure, other failures may be detected.
Therefore, the failure recovery system must be able to handle failures at any time.

Moreover, when a system recovering from failure, it is in an unstable state. Therefore,
if further failures are not handled properly then they may cause the system to go into
an inconsistent state, and it may be substantially harder to recover from this state. Fur-
thermore, simultaneously recovering two or more components without a global recovery
plan may create race conditions. The components may be trying to get hold of the same
resource or doing operations to undo each other’s effect. Thus, the failures in the system
must be handled systematically. However, before discussing the details of such approach
there are some assumptions that are necessary for our approach to work.

• No False Positives. The first assumption is that no false positives occur in the
system. False positives occur when a component temporarily malfunctions and
stops the component from sending any heartbeat or makes it unable to respond to
any ping. After some period of time the component may start functioning again and
may send the periodic heartbeat. Packet loss and other network malfunctions also

3

contribute to this problem. In our present model we assume that the components
have a fail-stop behavior and if they fail they do not start working again unless a
recovery process is executed on them. We also assume that the network is reliable
and efficient and packet loss will be hidden at the network layer.

• Perfect Recovery. The second assumption is that the recovery process is perfect.
By this we mean that given a recovery script, the recovery is executed without any
failures, although the recovery plan may be flawed. This assumption helps to scope
the problem by allowing us to focus on the failure of other components during the
recovery process: failures that can alter the path of the recovery process.

4 Dependency Model

The theoretical underpinning of our approach is based on the dependencies in the system.
The dependencies in the system are specified in the form of a dependency model. This
model is represented in form of a dependency graph having different edges to specify the
kinds of dependencies. Each component of the system is a node in the dependency graph.

4.1 Kinds of Dependencies

There are two kinds of dependencies in the dependency graph: hard and soft.
Hard Dependencies are dependencies representing actual functional dependencies

between components without which the dependent component can not provide any real
functionality. For example, component A has a hard dependency on component B. If
component B fails then component A, although working, can not provide any functional-
ity. An instance of hard dependency in the real world is the dependency of a application
server on a servlet engine. This is shown in Figure 2 by a solid line in the dependency
graph. If the servlet engine fails the application server, although working, can not pro-
vide any functionality. This is because servlet engine invokes all the functionality of
application server. Without the servlet engine there is no other component that invoke
the functionality in the application server.

Soft Dependencies are dependencies representing use relationships between com-
ponents. For example, component A has soft dependency on component C. If component
C fails then component A can still provide partial functionality. An instance of soft de-
pendency is a dependency of an http server on a DNS server. This is shown in Figure 2
by a dotted line in the dependency graph. If the DNS server fails the http server can be
accessed directly by using an IP address instead of full qualified domain address.

4.2 Dependency State

The various states that a component can take are working (W), working with no func-
tionality (N), working with reduced functionality (R) and failed (F).

4

Figure 2: Dependency graph of system components.

The dependency relationship that determines the state of the component is deter-
mined based on whether that component is dependent or antecedent to a failed compo-
nent and whether the dependency between them is hard or soft. If a component depends
on the failed component and has a hard dependency on the failed component then it
is working with no functionality, therefore, it is in state N . However, if a component
depends on the component and has a soft dependency on the failed component then it
is working with partial or reduced functionality and is in state R. All other components
with no dependency link to the failed component are in the working state W .

5 Example System

In order to explain our use of dependencies, we give a small example of a real world
system. This example is a typical web based system consisting of various servers that
we call components in this paper. Figure 2 shows the hard and soft dependencies among
the different components of the system. Please note that this may not be an actual
representation of dependencies among a real application because dependencies are design
specific for real world systems.

In our example system there are six components: DNS, HTTP, Servlet, Application
server (AS), Database, and SMTP. All these components are assumed to be in a working
state. However, their state can change based on their dependency relationship with a
failed component.

5

6 Planning

Planning has various sub-phases as shown in Figure 1. These phases are invoked sequen-
tially during the recovery process.

The first sub-phase in the planning process is to analyze the dependency graph. The
states of the components are determined by analyzing their dependency relationship with
the failed component. In order to see how it works lets take a failure scenario from our
example and analyze the dependency graph. All the components initially are in state W .
Suppose that the component Database fails. Therefore, the database component goes in
a failed state F . The Application server (AS) component has a hard dependency on the
database component so it goes into the state N . The Servlet has a soft dependency on
Database so it goes in state R. All other components in the system (SMTP, HTTP and
DNS) are in the state W because failure of the Database does not affect them directly.
However, if there is a transitive dependency with a hard edge from any of the components
that are currently in a state N then the transitively dependent component also be in
state N . No such dependency is present in our example system.

The next phase is to find a target configuration based on the states of the components
in the system. The target configuration may be explicit or implicit. In an explicit target
configuration there is a configuration available which gives the details of the component
placement, its configuration parameters etc. However, if an explicit configuration is
not available then an implicit configuration can be specified. An implicit configuration
specifies only the properties that needs to be true at the end of the recovery process.
A minimum implicit configuration is ”component A must be working” specified in the
planning language format.

After the planner executes, it is assumed to produce a plan for getting from the initial
(failed) state to the target configuration. In order to execute the plan, it is converted
into an executable script. This script is then given as input to the execute phase.

6.1 Handling Failure During Planning

Up to the point where the script is given to the execute phase, all of the planning has been
offline, and nothing has actually been done to the failed system. Handling new failures
that occur during the planning phase depends on the current state of those components
and their relationship to the state of all other components. Components detected as
failed can be in any of these states previously R, N or W . In the following subsection we
discuss the failure of the components based on their previous state. and how the recovery
system handles these additional failures. Table 1 provides a summary of the process.

6.1.1 Failure of components in state N

As discussed in the previous section the components in state N are not providing any
functionality. Before starting the planning process, therefore, we treat these components
as being in a failed state and are known to our planner.

6

Table 1: A summary of what happens to the recovery process when more components
fail.

If a component in state N reports failure, we are already calculating a plan for its
recovery, so we do not need to restart the planning process.

One problem that must be addressed is the restarting of components in N . Such
a component may not be providing any functionality, but it may still be running. The
solution to this problem is to explicitly stop all the components in state N after the
planning phase finishes. By stopping these components, they truly go into a state F .

It should be noted that this solution, stopping non-functioning components, may
actually be unnecessary. It might be the case that the component can be made to
function again once all of its antecedents are up and running. We currently do not
take this possibility into consideration because it complicates the planning and allows
for better optimization of the resulting plan. An implicit assumption here is that the
stopping and starting time of the components is in not significant.

To show how this process works, assume that we start the recovery process of the
Database. we assume that because the Application Server (AS) is in a state N it is also
considered to be failed. At the end of the planning phase if AS has not reported a failure,
it is explicitly stopped to execute the recovery plan on it.

6.1.2 Failure of components in state R

The failure of the components in state R during the planning process can complicate the
plan because these components are presumably providing some functionality, and it may
be that some other dependent components are using their functionality. In practice, the
handling of components in state R is pretty straightforward. If a component in state R

7

fails we have two options. We can either stop the planning process and start it again
taking into account the failure of component previously in state R or we can wait and let
the present recovery process finish. Once the present recovery process finishes, we make
a second run of the recovery process and recover the newly failed component.

Again in our example: if the Servlet fails during the recovery process then the recovery
process of Database (and Application Server) can continue without problem. Once these
two recover, then the recovery process is applied to the Servlet. Note that there is a
hard dependency of the Application Server on the Servlet. Therefore, unless the Servlet
Engine is working, the Application Server can not provide any functionality. In this
particular case, then, the planning process has to be stopped and restarted to take the
failure of the Servlet into account.

6.1.3 Failure of components in state W

Working components can be divided into two categories based on their dependency rela-
tionship with the components in states N or R.

1. Components that are antecedents of components in state F , N or R, and

2. components that are not antecedents of any component in states F , N or R.

In the first category the failed component is an antecedent of a component in state
F ∧N ∧R. In this case the planning phase must be restarted because there is no point in
recovering a dependent component without recovering an antecedent component. With-
out an antecedent component (assuming a hard dependency), the dependent component
will not be able to provide any functionality. Therefore, the antecedent component has
to be included in the planning phase to get a better recovery plan.

So if, for example, the Http server fails during the recovery process, it has to be
stopped and started again. This is because the Servlet is in state R and it has a hard
dependency on Http. Because Http has failed, the Servlet engine will also be considered
as failed. Thus the recovery process has to be restarted while taking into account the
failures of Database, AS, Servlet and Http.

In the second category, the present recovery process can continue and finish. After it
has completed, the recovery can be planned and executed for the newly failed and totally
independent component. For example, if the DNS fails then its can be recovered later
because no component in the system has a hard dependency on it.

7 Plan Execution

The output of the planning phase is a recovery plan for the system. This plan is translated
into an executable script (i.e. a recovery script). The recovery script is executed on the
system to bring the components in the system back to the working state. Again however,
additional (or already repaired) components may fail during the execution of the recovery
script.

8

7.1 Handling Failure During Plan Execution

We again group the components based on their state during the recovery process. Re-
call from the previous section that the components in state N were failed or explicitly
stopped. Therefore, we are already recovering them so we will only consider the failure
of components in states R and W .

7.1.1 Failure of components in state R

The failure of components in state R does not cause a significant problem during the
recovery process. The components in state R are dependent so they can be recovered at
a later time. Thus the present recovery process can continue without interruption. Once
the recovery process finishes, the newly failed component can be recovered by executing
the plan-execute phase again on the system.

Rolling back the recovery process in this case can be costly because here the actual
recovery is being executed on the system. Therefore, the best alternative is to wait and
recover these components later.

7.1.2 Failure of components in state W

The failure of the components in state W can be divided into two categories. The first
category is if they are an antecedent of the components being recovered and the second
is if they are totally independent.

In the first case the recovery process has to be rolled back. This rolling back is required
because without the antecedent component the recovery of the failed components will not
actually recover the system. Therefore, rolling back of the recovery process is critical.
Once the recovery process is rolled back the plan for recovery again has to be made
by incorporating the newly failed components. After the recovery plan is available the
execute phase is carried out on the system.

In the second case the recovery process can continue and finish because the totally
independent components are not dependent or antecedent of any component being re-
covered. Therefore, they can be recovered after the current recovery process finishes.

7.1.3 A Flawed Recovery

Another type of failure in the recovery process results from a flawed plan. In this case the
recovery process seems to work but the resulting system is not functioning normally or
not functioning at all. This may be because the planner produced a flawed plan. Recall
that we assume that the recovery process is perfect and it does not make mistakes. The
mistake is in the plan that is computed by the planner.

There are two steps involved in this type of failure. First to detect that the system
is not working normally. Second, to recover it again.

In order to find out if the system is working normally we use an acceptance test.
This acceptance test can be thought to be an online testing of the system; however, it
is at a relatively small scale. We assume that the components of the system are already

9

thoroughly tested before deployment. Therefore, we only need to check if the system is
properly doing what it is supposed to do after the recovery. In order to achieve this, a set
of acceptance tests is carried out on the system. These tests have precomputed results
that should be given by a working system. Therefore, the results from the acceptance
test from the system are compared against the pre computed expected results. If the
results match, it means that the system is restored properly. However, if the results do
not match then it implies the system is not recovered properly.

The number of acceptance tests conducted on the system are based on two metrics
which cover the whole system functionality. These two tests are yield and harvest of the
system components [3].

Yield is the number of tests conducted on the system and how many of them suc-
ceeded. If all the tests conducted on the system succeeded then the yield is 100%.

Y ield =
tests completed

tests offered
(1)

Harvest is the number of components accessed in the system during the testing phase.
All the tests conducted on the system must access all the components of the system.
When all the components are accessed and the results given out as expected then the
harvest is 100%.

Harvest =
components accessed

total number of components
(2)

A 100% yield and 100% harvest means that the system is working properly. However,
if the tests do not result into a 100% yield and 100% harvest then there is a problem.
This shows that the plan was flawed and we need to re-recover the system.

One of the first steps in this (re-)recovery is to stop all the recovered components and
initiate the planning of recovery again. However, in the new initial state given to the
planner, it has to be specified that a particular configuration of the system did not work
and we need to find a new plan different from the previous plan.

When a new plan is found we repeat the recovery phase with the new plan and test
the system again. If the system works as expected then it is considered to be healed.
However, if the system does not pass the acceptance test then this process is repeated
again until we find a fully recovered system.

Failures during the acceptance test can also occur. However, as the system is re-
covering these failures can wait until the acceptance test finishes. If the system pass
the acceptance test the new failure is planned and executed as a new recovery process.
However, if the system fails the recovery process and a new recovery process needs to
be carried out on the system then the new failure is included in the previous set of
failures. Therefore, the plan that recovers the components include the previously failed
components and the newly failed components.

10

8 Related and Future Work

Most of the literature in the fault tolerance and autonomic computing does not take into
account the fact that failures are possible during the healing process. Therefore, this
work is building upon the previous work [6, 12, 7] in failure recovery and adding ways
to handle failures during failure recovery.

However, failures during failure recovery poses a tough problem because of the com-
plexities involved. In this paper we have presented some techniques based heavily on
the dependency model of the system. There is some work on dependency formaliza-
tion [1, 9, 5]. Our goal is to extend this work and make a more rigorous dependency
model. We will use this model not only in the failure recovery but also in the inter
and intra component configurations. Moreover, finding and formalizing dependencies are
required in the techniques presented in this paper. Even if the dependencies are speci-
fied, there could be some hidden dependencies present in the system. There is also work
in finding hidden dependencies in the system [4]. Therefore, we believe that there is a
promise in using the dependency model for dealing with failures during failure recovery.

9 Acknowledgements

This material is based in part upon work sponsored by DARPA, SPAWAR, and AFRL
under Contracts N66001-00-8945, F30602-00-2-0608, and F49620-01-1-0282. The content
does not necessarily reflect the position or the policy of the Government and no official
endorsement is implied.

References

[1] S. Alda, M. Won, and A. B. Cremers. Managing dependencies in component-based
distributed applications. In Revised Papers from the International Workshop on
Scientific Engineering for Distributed Java Applications, pages 143–154. Springer-
Verlag, 2003.

[2] N. Arshad, D. Heimbigner, and A. L. Wolf. A planning based approach to failure
recovery in distributed systems. In Proceedings of the ACM SIGSOFT International
Workshop on Self-Managed Systems (WOSS’04). ACM Press, Oct./Nov. 2004.

[3] E. A. Brewer. Lessons from giant-scale services. IEEE Internet Computing, 5(4):46–
55, 2001.

[4] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer. Pinpoint: Problem
determination in large, dynamic internet services. In Proceedings of the International
Conference on Dependable Systems and Networks (DSN-2002), June 2002.

[5] L. Cox and H. S. Delugach. Dependency analysis using conceptual graphs. In
Proceedings of the 9th International Conference on Conceptual Structures, ICCS

11

2001, Stanford, CA, USA, July 30-August 3, 2001, volume 2120 of Lecture Notes in
Computer Science. Springer, 2001.

[6] D. Garlan and B. Schmerl. Model-based adaptation for self-healing systems. In
Proceedings of the first workshop on Self-healing systems, pages 27–32. ACM Press,
2002.

[7] S. George, D. Evans, and L. Davidson. A biologically inspired programming model
for self-healing systems. In WOSS ’02: Proceedings of the first workshop on Self-
healing systems, pages 102–104. ACM Press, 2002.

[8] A. Gerevini and I. Serina. Lpg: a planner based on planning graphs with action
costs. In Proceedings of the Sixth Int. Conference on AI Planning and Scheduling
(AIPS’02), pages 12–22. AAAI Press, 2002.

[9] A. Keller and G. Kar. Dynamic dependencies in application service management,
2000.

[10] J. Knight, D. Heimbigner, A. Wolf, A. Carzaniga, J. Hill, and P. Devanbu. The
willow survivability architecture, 2001.

[11] National Institute of Standards and Technology. Contingency Planning Guide for
Information Technology Systems. (http://csrc.nist.gov/publications/nistpubs/800-
34/sp800-34.pdf).

[12] J. Park and P. Chandramohan. Static vs. dynamic recovery models for survivable
distributed systems. In HICSS, 2004.

12

